Saturday, May 16, 2009

`int_1^4 1/(xsqrt(16x^2-5)) dx` Evaluate the definite integral

Make the substitution  `u = sqrt(16x^2 - 5),` then `16x^2 = u^2 + 5,`


`du = (32x)/(2sqrt(16x^2 - 5)) dx = (16 x dx)/sqrt(16x^2 - 5),`


or  `dx/sqrt(16x^2 - 5) = (du)/(16 x).`


The limits of integration for `u` are from `sqrt(11)` to `sqrt(251).`


The indefinite integral becomes  `int (du)/(16x^2) = int (du)/(u^2 + 5),`


which is equal to `1/sqrt(5) arctan(u/sqrt(5)) + C.`


This way the definite integral is


`1/sqrt(5) (arctan(sqrt(251/5)) - arctan(sqrt(11/5))) approx0.2026.`

No comments:

Post a Comment