Monday, June 15, 2009

`int 2x/(x^2+6x+13) dx` Find or evaluate the integral by completing the square

For the given integral: `int 2x/(x^2+6x+13) dx` , we may apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .


`int 2x/(x^2+6x+13) dx =2 int x/(x^2+6x+13) dx`


To be able to evaluate this, we apply completing the square on `x^2+6x+13` .


The `x^2+6x+13` resembles `ax^2+bx+c` where:


`a= 1` and `b =6` that we can plug-into `(-b/(2a))^2` .


`(-b/(2a))^2= (-(6)/(2*1))^2`


                 `= (-6/2)^2`


                `= (-3)^2`


                 `=9`


To complete the square, we add and subtract 9:


`x^2+6x+13 +9 -9`


Group them as: `(x^2+6x+9)-9+13`


Simplify: `(x^2+6x+9)+4`


Apply factoring for the perfect square trinomial: `x^2+6x+9 = (x+3)^2`


`(x^2+6x+9)+4=(x+3)^2 + 4`


Which means `x^2+6x+13 =(x+3)^2 + 4` then the integral becomes:


`2 int x/sqrt(x^2+6x+13) dx =2 int x/((x+3)^2 + 4) dx`


 For the integral part, we apply u-substitution by letting:


`u = x+3` then `x= u-3` and  `du =dx`


Then,


`2 int x/((x+3)^2 + 4) dx= 2 int (u-3)/(u^2 + 4) du`


Apply the basic integration property: : `int (u+v) dx = int (u) dx + int (v) dx` .


`2 int (u-3)/(u^2 + 4) du=2 [int u/(u^2 + 4) du - int 3/(u^2 + 4) du]`



For the integration of `int u/(u^2 + 4) du` , let:


`v=u^2+4` then `dv =2u du` or `(dv)/2 = u du` .


Then,


`int u/(u^2 + 4) du = int ((dv)/2)/(v)`


                        `= 1/2 int (dv)/(v)`


                       ` = 1/2ln|v|+C`


Plug-in `v= u^2+4,` we get: `int u/(u^2 + 4) du =1/2ln|u^2+4|+C`


For the second integration: `- int 3/(u^2 + 4) du` , we follow the basic integration formula for inverse tangent function:


`int (du)/(u^2+a^2) = 1/a arctan(u/a)+C`


Then,


`- int 3/(u^2 + 4) du =-3 int (du)/(u^2 + 2^2)`


                              `= -3 *1/2arctan(u/2)+C`


                            `=-3/2 arctan(u/2)+C`


Combine the results, we get:


`2 [int (u/(u^2 + 4) du - int 3/(u^2 + 4) du]`


`=2*[ 1/2ln|u^2+4|-3/2arctan(u/2)]+C`


`= ln|u^2+4| - 3arctan(u/2)+C`


Plug-in `u=x+3` to solve for the final answer:


`int 2x/(x^2+6x+13) dx= ln|(x+3)^2+4| - 3arctan((x+3)/2)+C`

No comments:

Post a Comment