Monday, June 8, 2009

`y = tanh^-1(x)+ ln(sqrt(1-x^2))` Find the derivative of the function

Given,


`y = tanh^-1(x)+ ln(sqrt(1-x^2))`


so we have to find the y'


so,


`y' =(tanh^-1(x)+ ln(sqrt(1-x^2)))'`


`=(tanh^-1(x))'+(ln(sqrt(1-x^2)))'`


as we know


`(tanh^-1(x))' =1/(1-x^2)`


and so we have to find out


`(ln(sqrt(1-x^2)))' `


let `u =sqrt( 1-x^2)`


it can be solved by the following,


`(df)/dx = (df)/(du) * (du)/dx`


so,


`d/dx (ln(sqrt(1-x^2)))= d/(du) ln(u) * (du)/dx`


`= 1/u * d/dx (sqrt( 1-x^2))`


`=1/sqrt( 1-x^2) * (-x/sqrt( 1-x^2))`


`= -x/( 1-x^2)`


now,as


`y'=(tanh^-1(x)+ ln(sqrt(1-x^2)))'`


`=1/( 1-x^2) +(-x/( 1-x^2))`


`= (1-x)/( 1-x^2)`


`=1/(1+x)`

No comments:

Post a Comment