Sunday, August 2, 2009

`sinh^2(x) = (-1+cosh(2x))/2` Verify the identity.

`sinh^2(x) = (-1+cosh(2x))/2`


proof:


LHS=>


`sinh^2(x) =(( e^x - e^(-x))/2)^2 `


= `((e^x - e^(-x))^2)/4`


= `((e^x)^2 - 2e^x e^(-x) + (e^-x)^2)/4`


= `(e^(2x) + e^(-2x )- 2)/4`


 =` (-2 + e^(2x) + e^(-2x))/4 `


 = `((-2 + e^(2x) + e^(-2x))/2)/2`


= `(-1 + (e^(2x) + e^(-2x))/2)/2 `


= `(-1 + cosh 2x)/2 `


= RHS


as LHS=RHS


so,


`sinh^2(x) = (-1+cosh(2x))/2`

No comments:

Post a Comment