Thursday, October 8, 2009

`int_0^ln5 e^x/(1+e^(2x)) dx` Evaluate the definite integral

For the given integral problem:` int_0^(ln(5))e^x/(1+e^(2x))dx` , it resembles the basic integration formula for inverse tangent:


`int_a^b (du)/(u^2+c^2) = (1/c)arctan(u/c) |_a^b`


where we let:


`u^2 =e^(2x) ` or` (e^x)^2 `   then `u= e^x`


`c^2 =1` or `1^2` then `c=1`


For the derivative of `u =e^(x)` , we apply the derivative of exponential function:


`du =e^x dx` .



Applying u-substitution: `u = e^x ` and` du = e^x dx` , we get:


`int e^x/(1+e^(2x))dx =int (e^xdx)/(1+(e^x)^2)`


                              `=int (du)/(1+(u)^2)`


Applying the basic integral formula of inverse tangent, we get:


`int (du)/(1+(u)^2) =(1/1)arctan(u/1)`


                           = `arctan(u)`


Express it in terms of x by plug-in `u=e^x` :


`arctan(u) =arctan(e^x)`



Evaluate with the given boundary limit:


`arctan(e^x)|_0^(ln(5)) =arctan(e^(ln(5)))-arctan(e^0)`


                          ` =arctan(5)-arctan(1)`


                                ` =arctan(5) -pi/4`

No comments:

Post a Comment