Tuesday, December 29, 2009

`3(5^(x-1)) = 86` Solve the equation accurate to three decimal places

Problem:`3(5^(x-1))=86`


` `


To simplify, we divide both sides by 3:


`(3(5^(x-1)))/3=(86)/3`


`5^(x-1)=(86)/3`


` `


` `


Take the "log" on both sides to apply the logarithm property: `log(x^y)=y*log(x)` .


Applying on the given problem: 


`log(5^(x-1))=log((86)/3)`  ` ` 


` `



`(x-1)log(5)=log((86)/3)`


Divide both sides by` log(5)`  ` ` to isolate`(x-1)` :


` `


` `


Add 1 on both sides to solve x:


`x-1=(log((86)/3))/(log(5))`


` `


 +1                                  +1


------------------------------------------


`x=(log((86)/3))/(log(5))+1`


` `


`x~~3.085`



To check, plug-in`x=3.085` in  ` ` :


`3(5^(3.085-1))=?86`


`3*5^2.085=?86`


`3*28.66503386=?86`


`85.99510157~~86`   TRUE.


 Conclusion:  x= 3.085 as the real solution

No comments:

Post a Comment