Monday, September 6, 2010

`f(t) = arctan(sinht)` Find the derivative of the function

`f(t)=arctan(sinh(t))`


Take note that the derivative formula of arctangent is


  • `d/dx[arctan(u)]=1/(1+u^2)*(du)/dx`

Applying this, the derivative of the function will be


`f'(t) = d/(dt)[arctan(sinh(t))]`


`f'(t) = 1/(1+sinh^2(t)) *d/(dt)[sinh(t)]`


Also, the derivative formula of hyperbolic sine is 


  • `d/dx[sinh(u)]=cosh(u)*(du)/(dx)`

Applying this, f'(t) will become


`f'(t)= 1/(1+sinh^2(t)) *cosh(t)*d/(dt)(t)`


`f'(t)= 1/(1+sinh^2(t)) *cosh(t)*1`


`f'(t)= cosh(t)/(1+sinh^2(t))`


`f'(t)= cosh(t)/(cosh^2(t))`


`f'(t)= 1/cosh(t)`  is the final derivative

No comments:

Post a Comment