Sunday, September 5, 2010

`h(x) = 1/4sinh(2x) - x/2` Find the derivative of the function

`h(x) = 1/4sinh(2x) - x/2`


To take the derivative of this function, refer to the following formulas:


  • `d/dx(u +-v) = (du)/dx+-(dv)/dx`

  • `d/(dx)[sinh(u)]=cosh(u)*(du)/dx`

  • `d/dx(cu)=c*(du)/dx`

  • `d/dx(cx)=c`

 Applying them, h'(x) will be


`h'(x)=d/dx[1/4sinh(2x) - x/2 ]`


`h'(x)=d/dx [ 1/4sinh(2x)]- d/dx(x/2)`


`h'(x)=1/4d/dx[sinh(2x)] - d/dx(x/2)`


`h'(x)=1/4* cosh(2x)*d/dx(2x) - 1/2`


`h'(x)=1/4*cosh(2x)*2 - 1/2`


`h'(x)=1/2cosh(2x)-1/2`


 Therefore, the derivative of the function is `h'(x) =1/2cosh(2x)-1/2` .

No comments:

Post a Comment