Wednesday, March 23, 2011

How do I differentiate the natural logarithm? For example, y=3ln(6t+1)

`y=3ln(6t+1)`


To take the derivative of this, refer to formula:


 `d/(dx) (ln u) = 1/u * (du)/dx `


Applying that, the derivative of the function will be:


`d/(dt)(y) = d/(dt)[3ln(6t+1)]`


`(dy)/(dt)=3d/(dt)[ln(6t+1)]`


`(dy)/(dt)=3*1/(6t+1) * d/(dt)(6t+1)`


`(dy)/(dt)=3*1/(6t+1) * 6`


`(dy)/(dt)=18/(6t+1)`



Therefore,  `(dy)/(dt) = 18/(6t+1)` .

No comments:

Post a Comment