Monday, July 4, 2011

`int_(pi/2)^pi sinx/(1+cos^2x) dx` Evaluate the definite integral

We have to evaluate the integral: `\int_{\pi/2}^{\pi}\frac{sinx}{1+cos^2x}dx`


Let `cosx=u`


So, `-sinx dx=du`


When `x=\pi/2, u=0`


         `x=\pi, u=-1`


So we have,


`\int_{\pi/2}^{\pi}\frac{sinx}{1+cos^2x}dx=\int_{0}^{-1}\frac{-du}{u^2+1}`


                       `=\int_{-1}^{0}\frac{du}{u^2+1}`



                        =arctan(0)-arctan(-1)



                        =-arctan(-1)



                        =arctan(1)



                        =`pi/4`

No comments:

Post a Comment