Thursday, December 1, 2011

`int_-2^2 dx/(x^2+4x+13)` Find or evaluate the integral by completing the square

 To evaluate the given integral: `int_(-2)^(2)(dx)/(x^2+4x+13)` ,


 we follow the first fundamental theorem of calculus: 


If f is continuous on closed interval [a,b], we follow:


` int_a^bf(x)dx = F(b) - F(a)`


 where F is the anti-derivative or indefinite integral of f on closed interval `[a,b]` .


  To determine the `F(x)` , we apply completing the square on the trinomial: `x^2+4x+13.`


Completing the square:


`x^2+4x+13 ` is in a form of   ` ax^2 +bx+c`


 where:


a =1


b =4


 c= 13


 To complete square ,we add and subtract `(-b/(2a))^2` on both sides:


With a=1 and b = 4 then:


`(-b/(2a))^2 =(-4/(2*1))^2 = 4`


Then`x^2+4x+13` becomes:


`x^2+4x+ 13 +4-4`


`(x^2+4x+4) + 13 -4`


Applying` x^2 +4x +13 =(x+2)^2 + 9 ` in the given integral, we get:


`int_(-2)^(2) (dx)/(x^2+4x+13) =int_(-2)^(2) (dx)/((x+2)^2 + 9)`


 The integral form: `int_(-2)^(2) (dx)/((x+2)^2 + 9) ` resembles the 


basic integration formula for inverse tangent function:


`int_a^b (du)/(u^2+c^2) = (1/c)arctan(u/c) |_a^b`


Using u-substitution, we let `u = x+2 ` then `du = 1dx`  or  ` du=dx.`


where the boundary  limits:  upper bound = 2 and lower bound =-2


and  `c^2 = 9` then `c = 3`


The indefinite integral will be:


`int_(-2)^(2) (dx)/((x+2)^2 + 9) =int_(-2)^(2) (du)/(u^2 + 9)`


            `=(1/3)arctan(u/3) |_(-2)^(2)`


Plug-in` u=x+2` to solve for` F(x)` :


`(1/3)arctan(u/3) |_(-2)^(2)=(1/3)arctan((x+2)/3) |_(-2)^(2).`



We now have  `F(x)|_a^b=(1/3)arctan(u/3) |_(-2)^(2).`



Applying `F(x)|_a^b= F(b)-F(a)` , we get:


`(1/3)arctan(x+2/3) |_(-2)^(2)`


 ` =(1/3)arctan((2+2)/3) -(1/3)arctan((-2+2)/3)`


` =(1/3)arctan(4/3) -(1/3)arctan(0/3)`


`=(1/3)arctan(4/3) -0`


  `=(1/3)arctan(4/3)`

No comments:

Post a Comment