Friday, December 9, 2011

`int (x+5)/sqrt(9-(x-3)^2) dx` Find the indefinite integral

We have to evaluate the integral `\int \frac{x+5}{\sqrt{9-(x-3)^2}}dx`



Let `x-3=u`


So, `dx=du`


Hence we can write,


`\int \frac{x+5}{\sqrt{9-(x-3)^2}}dx=\int \frac{u+8}{\sqrt{9-u^2}}du`


                         `=\int \frac{u}{\sqrt{9-u^2}}du+\int \frac{8}{\sqrt{9-u^2}}dx`


    Now we will first evaluate the integral: `\int \frac{udu}{\sqrt{9-u^2}}`


Let `9-u^2=t`


So, `-2udu=dt`


Hence we have,


`\int \frac{udu}{\sqrt{9-u^2}}=\int \frac{-dt}{2\sqrt{t}}```


               `=-\sqrt{t}`


                `=-\sqrt{9-u^2}`



Now we will evaluate the integral`\int \frac{8}{\sqrt{9-u^2}}du`



`\int \frac{8}{\sqrt{9-u^2}}du=\frac{8du}{3\sqrt{1-(\frac{u}{3})^2}}`


                  `=8sin^{-1}(\frac{u}{3})`  since we have the identity


`\frac{d}{dx}(sin^{-1}(\frac{u}{a}))=\frac{1}{a}.\frac{1}{\sqrt{1-(\frac{u}{a})^2}}`



So finally we have the result as:


`\int \frac{x+5}{\sqrt{9-(x-3)^2}}dx=-\sqrt{9-u^2}+8sin^{-1}(\frac{u}{3})+C`


                         `=-\sqrt{9-(x-3)^2}+8sin^{-1}(\frac{x-3}{3})+C`


                          ``

No comments:

Post a Comment