Friday, February 24, 2012

`int (x^2+3)/(xsqrt(x^2-4)) dx` Find the indefinite integral

Recall indefinite integral follows `int f(x) dx = F(x)+C`


 where:


`f(x)` as the integrand


`F(x)` as the antiderivative of `f(x)`


`C` as the constant of integration.



 The given problem: `int (x^2+3)/(xsqrt(x^2-4)) dx` has an integrand of `f(x)=(x^2+3)/(xsqrt(x^2-4))` .


Apply u-substitution on `f(x) dx` by letting `u =x^2` then `du = 2x dx` or `dx= (du)/(2x)` :


`int (x^2+3)/(xsqrt(x^2-4))dx =int (u+3)/(xsqrt(u-4))*(du)/(2x)`


                        `=int ((u+3)du)/(2x^2sqrt(u-4))`


                         `=int ((u+3)du)/(2usqrt(u-4))`


Apply the basic integration property:` int c*f(x) dx = c int f(x) dx` :


`int ((u+3)du)/(2usqrt(u-4))=(1/2)int ((u+3)du)/(usqrt(u-4))`


Apply the basic integration property for sum:


`int (u+v) dx = int (u) dx+int (v) dx.`


`(1/2)int ((u+3)du)/(usqrt(u-4))=(1/2) [int (udu)/(usqrt(u-4))+int (3du)/(usqrt(u-4))]`


For the integration of the`int (udu)/(usqrt(u-4))` , we can cancel out the u:


`int (udu)/(usqrt(u-4))=int (du)/sqrt(u-4)`


Let ` v= u-4` then `dv =du` .


Apply the Law of exponents: `sqrt(x)= x^1/2` and `1/x^n= x^-n` ,  we get:


`int (du)/sqrt(u-4)=int (dv)/sqrt(v)`




Apply the Power Rule for integration: `int x^n dx= x^(n+1)/(n+1)+C`


`int v^(-1/2)dv=v^((-1)/2+1)/((-1)/2+1) +C`


                  ` = v^(1/2)/(1/2)`


                 ` =v^(1/2)*(2/1)`


                 ` = 2v^(1/2)`  or   `2sqrt(v)`


With `v= u-4`  then `2sqrt(v) = 2sqrt(u-4)` .


The integral becomes:


`int (du)/sqrt(u-4)=2sqrt(u-4).`



For the integration of `int (3du)/(usqrt(u-4))` , we basic integration property: `int c*f(x) dx = c int f(x)`


`int (3du)/(usqrt(u-4))=3int (du)/(usqrt(u-4))`


Let: `v= sqrt(u-4)`


Then square both sides to get `v^2=u-4` then `v^2+4 =u`


Applying implicit differentiation on `v^2=u-4` , we get: `2vdv = du` .


Plug-in `du =2v dv` , ` u=v^2+4` and `v=sqrt(u-4)` , we get:


`3 int (du)/(usqrt(u-4))=3int (2vdv)/((v^2+4)*v)`


                   ` =3int (2dv)/((v^2+4))`


                   ` =3*2int (dv)/(v^2+4)`


                   ` =6int (dv)/(v^2+4)`


The integral part resembles the basic integration for inverse tangent function:


`int (dx)/(x^2+a^2) = (1/a)arctan(u/a)+C`


Then,


`6int (dv)/(v^2+4) =6*(1/2)arctan(v/2)+C`


                 `=3arctan(v/2)+C`


Plug-in `v =sqrt(u-4)` , we get:


`int (3du)/(usqrt(u-4)) =3arctan(sqrt(u-4)/2)+C`



Combining the results, we get:


`(1/2) [int (udu)/(usqrt(u-4))+int (3du)/(usqrt(u-4))] = (1/2)*[2sqrt(u-4)+3arctan(sqrt(u-4)/2)]+C`


` =sqrt(u-4)+3/2arctan(sqrt(u-4)/2)+C`


Plug-in `u = x^2` to get the final answer:


`int (x^2+3)/(xsqrt(x^2-4)) dx= sqrt(x^2-4)+3/2arctan(sqrt(x^2-4)/2)+C`

No comments:

Post a Comment