Wednesday, June 27, 2012

`int_-4^4 3^(x/4) dx` Evaluate the definite integral

To evaluate the integral: `int_(-4)^(4) 3^(x/4) dx` , we follow the formula based from the  First Fundamental Theorem of Calculus: 


`int_a^bf(x)dx=F(b)- F(a)`


wherein  f is a continuous and F is the indefinite integral f on the closed interval [a,b].


Based on the given problem, the boundary limits are:


a =-4 and b=4


To solve for F as the indefinite integral of f, we follow the basic integration formula for an exponential function: 


`int a^u du = a^u/(ln(a))+C`


By comparison:` a^u `   vs     ` 3^(x/4)` , we let:


`a=3`   and   `u=x/4`   then   `du= 1/4dx` .


Rearrange` du= 1/4dx` into `4 du =dx` .


Apply u-substitution using `u =x/4` and `4du=dx` :


`int 3^(x/4) dx= int 3^u * 4du`


 Apply the basic properties of integration: `int c*f(x) dx= c int f(x) dx` .


 `int 3^u * 4du =4 int 3^u du`


Applying the formula: `int a^u du = a^u/(ln(a))` .


`4 int 3^u du= 4 *[ 3^u/(ln(3))]`


Express in terms of x using` u=x/4` :


`4 *[ 3^u/(ln(3))] =4 *[ 3^(x/4)/(ln(3))]`


Then indefinite integral function `F(x) =4 *[ 3^(x/4)/(ln(3))]`


Applying F(b) - F(a) with the closed interval [a,b] as [-4,4]:


`int_(-4)^(4) 3^(x/4) dx =4 *[ 3^((4)/4)/(ln(3))] -4 *[ 3^(-4/4)/(ln(3))]`


`=(4*3^(1))/(ln(3)) - (4 * 3^(-1))/(ln(3))`


`=(12)/(ln(3))-4/(3ln(3))`


`= (12 -4/3) *1/(ln(3))`


`= ((36)/3-4/3)*1/(ln(3))`


`= (32/3)*1/(ln(3))`   or  ` (32)/(3ln(3))` as the Final Answer.

No comments:

Post a Comment