Saturday, October 20, 2012

`y = 6^(3x-4)` Find the derivative of the function

`y=6^(3x-4)`


The derivative formula of an exponential function is:


`d/(dx) (a^u) = ln(a) * a^u * (du)/dx`


Applying this formula, the derivative of a function will be:


`(dy)/(dx) = d/(dx) (6^(3x-4))`


`(dy)/(dx) =ln(6) * 6^(3x-4) * d/(dx) (3x-4)`


`(dy)/(dx) = ln(6) * 6^(3x-4) * 3`


`(dy)/(dx) = 3ln(6) * 6^(3x-4)`



Therefore, the derivative of the function is  `(dy)/(dx) = 3ln(6) * 6^(3x-4)` .

No comments:

Post a Comment