Tuesday, November 6, 2012

`cosh^2(x) = (1+coshx)/2` Verify the identity.

`cosh^2(x) = (1+coshx)/2`


proof:


LHS=>



`cosh^2(x)=1+sinh^2(x) `


`=1+[(e^x-e^-x)/2]^2 `


`=1+(1/4)[(e^x-e^(-x))]^2] `


`=1+(1/4)[e^(2x)+e^(-2x) -2e^x e^(-x)] `


`=1+(1/4)[e^(2x)+e^(-2x) - 2] `


`=1+(1/4)[2(e^(2x)+e^(-2x))/2 -2]`



on taking 2 common and cancelling, we get



`=1+(1/2)[(e^(2x)+e^(-2x))/2 -1] =1+(1/2)[(e^(2x)+e^(-2x))/2 ] - (1/2)`



`= (1/2)+(1/2)[(e^(2x)+e^(-2x))/2 ]`


`= (1/2)+(1/2)[cosh(2x)]`


`=(1+cosh(2x))/2`


but RHS=>`(1+coshx)/2`


so LHS not equal to RHS

No comments:

Post a Comment