Monday, December 17, 2012

`int (x^4 + 5^x) dx` Find the indefinite integral

For the given integral:` int (x^4+ 5^x) dx` , we may apply the basic integration property:


`int (u+v) dx = int (u) dx + int (v) dx` .


We can integrate each term separately.


`int (x^4+ 5^x) dx =int (x^4) dx + int (5^x) dx`


For the integration of first term:  `int (x^4) dx` ,


we apply the Power Rule for integration:


`int (x^n) dx = x^(n+1)/ (n+1) +C` .


Then,


`int (x^4) dx = x^(4+1)/(4+1) +C`


`int (x^4) dx = x^(5)/(5) +C`



For the integration of first term: `int (5^x) dx` , we apply the basic integration formula for exponential function :


`int (a^x) dx = a^x/ln(a) +C`  where  ` a!=1`


Then,


`int (5^x) dx =5^x/ln(5) +C`


 Combining the two integrations for the final answer:


 ` int (x^4+ 5^x) dx =x^(5)/(5) +x^(5)/(5) +C` 

No comments:

Post a Comment