Thursday, January 31, 2013

`int x(5^(-x^2))dx` Find the indefinite integral

Indefinite integral are written in the form of` int f(x) dx = F(x) +C`


 where: `f(x)` as the integrand


         ` F(x) ` as the anti-derivative function 


          `C`  as the arbitrary constant known as constant of integration


For the given problem `int x(5^(-x^2)) dx` has an integrand in a form of exponential function.


 To evaluate this, we may let:


`u = -x^2` then  ` du= -2x dx or (-1/2)(du)= x dx` .


Applying u-substitution, we get:


`int x(5^(-x^2)) dx =int (5^(-x^2)) * x dx`


                            `=int (5^(u)) *(-1/2du)`


                           ` =-1/2int (5^(u) du)`


The integral part resembles the basic integration formula:


`int a^u du = a^u/(ln(a))+C`


Applying it to the problem: 


`-1/2int (5^(u) du)=-1/2 * 5^(u)/ln(5) +C`


Pug-in `u =-x^2` , we get the definite integral:


`-1/2 * 5^(-x^2)/ln(5) +C`


 or


`- 5^(-x^2)/(2ln(5)) +C`

No comments:

Post a Comment