Sunday, March 31, 2013

`sinh^-1t = ln(t + sqrt(t^2 + 1))` Prove

To prove


`sinh^-1 t =ln(t+sqrt(t^2+1))`


let


`sinh^-1 t = x`


`t=sinh(x)= (e^x -e^(-x))/2 =(e^x - (1/(e^x)))/2= (e^(2x) -1)/(2(e^x))`


let  ` t= (e^(2x) -1)/(2(e^x))`


=> `2e^x t = e^(2x) -1`


=> let ` e^x = u` so,


`2ut=u^2 -1`


=> `u^2 -2ut -1 =0`  is of the quadratic form `ax^2 +bx+c = 0` so finding the roots using the quadratic formula 


`(-b+-sqrt(b^2 -4ac))/(2a)`


here in the equation `u^2 -2ut -1 =0`


`a=1 , b=-2, c=-1`


`u=(-(-2t)+-sqrt(4t^2-4(1)(-1)))/2 `


`u=(2t+-sqrt(4t^2+4))/2 `


=`(2t+-2sqrt(t^2+1))/2`


=`t+-sqrt(t^2+1)`


Since`u = e^x > 0` then  `t+sqrt(t^2+1)>0`


So` e^x=t+sqrt(t^2+1)`


`x=ln(t+sqrt(t^2+1))`


Since


`sinh^-1 t = x`


it follows that


`sinh^-1 t = ln(t+sqrt(t^2+1))`

No comments:

Post a Comment