Thursday, June 5, 2014

`int dx/sqrt(1-4x^2)` Find the indefinite integral

We have to evaluate `\int \frac{dx}{\sqrt{1-4x^2}}`


Let `x=\frac{1}{2} sint `


So, `dx= \frac{1}{2}cost dt`


Hence we have,


`\int \frac{dx}{\sqrt{1-4x^2}}=\int \frac{\frac{1}{2}cost }{\sqrt{1-4(\frac{1}{4}sin^2t)}}dt`


               `=\int \frac{\frac{1}{2}cost}{\sqrt{1-sin^2t}}dt`


`= int 1/2cost/sqrt(cos^2t) dt`


                `=\int \frac{\frac{1}{2}cost}{cost}dt`


                 `=\int \frac{1}{2}dt`


                 `=\frac{1}{2}t+C`


                  `=\frac{1}{2}sin^{-1}(2x)+C`

No comments:

Post a Comment