Sunday, June 8, 2014

`int dx/sqrt(9-x^2)` Find the indefinite integral

We have to evaluate the integral: `\int \frac{dx}{\sqrt{9-x^2}}`


let `x=3sint`


So, `dx=3cost dt`


Hence we have,


`\int \frac{dx}{\sqrt{9-x^2}}=\int \frac{3cost}{\sqrt{9-9sin^2t}}dt`


              `=\int \frac{3cost}{\sqrt{9(1-sin^2t)}} dt`


               `=\int \frac{3cost}{\sqrt{9cos^2t}}dt`


                `=\int \frac{3cost}{3cost}dt`


                 `=\int dt`


                  `=t+C` (where C is a constant)


                  `=\sin^{-1}(x/3)+C`

No comments:

Post a Comment