Friday, March 6, 2015

`int_0^ln2 2e^(-x)coshx dx` Evaluate the integral

To compute this integral, recall the definition of hyperbolic cosine function:  `cosh(x) = (e^x + e^(-x))/2.`


Therefore the function under integral is equal to `1 + e^(-2x),` and its indefinite integral is  `x - 1/2 e^(-2x) + C.`


Now we can substitute the given limits of integration to the antiderivative and obtain


`int_0^(ln2) 2e^(-x) cosh(x) dx = ln2 - 1/2 (e^(-2ln2)) - (0 - 1/2) =`


`= ln2 - 1/8 + 1/2 =` ln2 + 3/8


(we used the identity `e^(lny) = y` and the property of exponent  `(a^b)^c = a^(bc)` ).

No comments:

Post a Comment