Monday, July 13, 2015

`int (x-2) / ((x+1)^2 + 4) dx` Find the indefinite integral

We have to evaluate the integral:`\int \frac{x-2}{(x+1)^2+4}dx`


Let `x+1=u`


So, `dx=du`


Hence we have,


`\int \frac{x-2}{(x+1)^2+4}dx=\int \frac{u-3}{u^2+4}du`


                       `=\int \frac{u}{u^2+2^2}du-\int\frac{3}{u^2+2^2}du`



First we will evaluate `\int \frac{u}{u^2+4}du`


Let `u^2+4=t`


So, `2udu=dt`


Therefore we can write,


`\int \frac{u}{u^2+4}du=\int \frac{dt}{2t}`


                `=\frac{1}{2}ln(t)`


                 `=\frac{1}{2}ln(u^2+4)`



Now we will evaluate,  `\int \frac{3}{u^2+4}du`


`\int \frac{3}{u^2+2^2}du=\frac{3}{2}tan^{-1}(\frac{u}{2})`



Therefore we have,


`\int \frac{x-2}{(x+1)^2+4}dx=\frac{1}{2}ln(u^2+4)-\frac{3}{2}tan^{-1}(\frac{u}{2})+C`


                       `=\frac{1}{2}ln((x+1)^2+4)-\frac{3}{2}tan^{-1}(\frac{x+1}{2})+C`


                        `=\frac{1}{2}ln(x^2+2x+5)-\frac{3}{2}tan^{-1}(\frac{x+1}{2})+C`

No comments:

Post a Comment