Thursday, August 6, 2015

`tanh^-1 x = 1/2 ln((1+x)/(1-x)) , -1

Given to prove


`tanh^(-1) x =1/2 ln((1+x)/(1-x))`


so let


`tanh^(-1) x =y`


=> `x= tanh(y)`


       `x =(e^y - e^-y)/(e^y + e^-y)`


=> `(e^y + e^-y)*x = (e^y - e^-y )`


=> `xe^y + xe^-y = e^y - e^-y`


=> `(xe^(2y)+x)/e^y = (e^2y -1)/e^y`


=> `(xe^(2y)+x)= (e^(2y) -1)`


=>`(xe^(2y)+x)-e^(2y) +1=0`


=>`e^(2y)(x-1)+x+1=0`


=>`(x-1)(e^(2y)) =-(x+1)`


=>`e^(2y) = -(x+1)/(x-1)`


=>` e^(2y) = (1+x)/(1-x)`


=>` e^(2y)=(1+x)/(1-x)`


=> `e^(2y) = ((1+x)/(1-x))`


=>`2y=ln (((1+x)/(1-x)))`


=>`y=1/2 ln (((1+x)/(1-x)))`


so,


`tanh^(-1) x =1/2 ln((1+x)/(1-x))`

No comments:

Post a Comment