Monday, January 11, 2016

`f(t) = t^(3/2)log_2sqrt(t+1)` Find the derivative of the function

We shall use:


Product rule


`(u cdot v)'=u' cdot v+u cdot v'`


Chain rule


`(u(v))'=u'(v) cdot v'`


`u` and `v` are both functions of arbitrary variable over which we are differentiating. 


First we apply product rule.


`f'(t)=(t^(3/2))' log_2 sqrt(t+1)+t^(3/2)(log_2 sqrt(t+1))'=`


Now we apply the chain rule on the second term.


 `3/2 t^(1/2)log_2 sqrt(t+1)+t^(3/2) 1/(sqrt(t+1)ln 2)cdot1/(2sqrt(t+1))=`


Now we simplify the obtained derivative to get the final result.


`3/2 sqrt(t)log_2 sqrt(t+1)+t^(3/2)/(2(t+1)ln2)`                                                         

No comments:

Post a Comment