Sunday, February 14, 2016

`sinh(2x) = 2sinhxcoshx` Verify the identity.

`sinh(2x)=2sinh(x)cosh(x)`


Take note that hyperbolic sine and hyperbolic cosine are defined as



  • `sinh(u)=(e^u - e^(-u))/2`


  • `cosh(u)=(e^u+e^(-u))/2`

So when the left side is expressed in exponential form, it becomes


`(e^(2x)-e^(-2x))/2=2sinh(x)cosh(x)`


Factoring the numerator, it turns into


`((e^x - e^(-x))(e^x + e^(-x)))/2=2sinh(x)cosh(x)`


To return it to hyperbolic function, multiply the left side by 2/2.


`((e^x - e^(-x))(e^x + e^(-x)))/2*2/2=2sinh(x)cosh(x)`


Then, rearrange the factors in such a way that it can be expressed in terms of sinh and cosh.


`2*(e^x - e^(-x))/2 * (e^x + e^(-x))/2=2sinh(x)cosh(x)`


`2*sinh(x)*cosh(x)=2sinh(x)cosh(x)`


`2sinh(x)cosh(x)=2sinh(x)cosh(x)`


This proves that the given equation is an identity.



Therefore,  `sinh(2x)=2sinh(x)cosh(x)` is an identity.

No comments:

Post a Comment