Friday, April 8, 2016

`int 1 / ((x-1)sqrt(x^2-2x)) dx` Find or evaluate the integral by completing the square

We have to evaluate the integral: `\int \frac{1}{(x-1)\sqrt{x^2-2x}}dx`


We can write the integral as:


`\int \frac{1}{(x-1)\sqrt{x^2-2x}}dx=\int \frac{1}{(x-1)\sqrt{(x-1)^2-1}}dx`


  Let `x-1=t`


So , `dx=dt`


hence we can write,


`\int \frac{1}{(x-1)\sqrt{(x-1)^2-1}}dx=\int \frac{1}{t\sqrt{t^2-1}}dt`


 Let `u=t^2`


So, `du=2tdt`


implies, `dt=\frac{1}{2t}du`


Therefore we have,


`\int\frac{1}{t\sqrt{t^2-1}}dt=\int \frac{1}{t\sqrt{u-1}}.\frac{du}{2t}`


                  `=\int \frac{1}{2u\sqrt{u-1}}du`


Now let `v=\sqrt{u-1}`


So, `dv=\frac{1}{2\sqrt{u-1}}du=\frac{1}{2v}du`


Hence we have,


`\int \frac{1}{2u\sqrt{u-1}}du=\int \frac{2vdv}{2(v^2+1)v}`


                   `=\int \frac{dv}{v^2+1}`


                    `=tan^{-1}(v)+C`  where C is a constant.


                     `=tan^{-1}(\sqrt{u-1})+C`


                      `=tan^{-1}(\sqrt{t^2-1})+C`


                      `=tan^{-1}(\sqrt{(x-1)^2-1})+C`


                       `=tan^{-1}(\sqrt{x^2-2x})+C`

No comments:

Post a Comment