Sunday, September 18, 2016

`r = 7%` Find the time necessary for $1000 to double when it is invested at a rate of r compounded (a) anually, (b) monthly, (c) daily, and...

Formula for compounding n times per year `A=P(1+r/n)^(nt)`


Formula for compounding continuously `A=Pe^(rt)`


A=Final Amount


P=Initial Amount


r=rate of investment expressed as a decimal


n=number of compoundings per year


t= time in years



a) r=7%  n=1 (annually)


`A=P(1+r/n)^(nt)`


`2000=1000(1+.07/1)^(1*t)`


`2=1.07^t`


`ln(2)=tln(1.07)`


`ln(2)/ln(1.07)=t`


`10.24=t`


Final answer: 10.24 years



b) r=7% n=12 (monthly)


`A=P(1+r/n)^(nt)`


`2000=1000(1+.07/12)^(12*t)`


`2=1.0058^(12t)`


`ln(2)=12tln(1.0058)`


`ln(2)/[12ln(1.0058)]=t`


`9.93=t`


Final Answer: 9.93 years



c) r=7%  t=365 (daily)


`A=P(1+r/n)^(nt)`


`2000=1000(1+.07/365)^(365*t)`


`2=(1.00019)^(365t)`


`ln(2)=365tln(1.00019)`


`ln(2)/[365ln(1.00019)]=t`


`9.90=t`


Final answer: 9.90 years



d) r=7% compounded continously


`A=Pe^(rt)`


`2000=1000e^(.07*t)`


`2=e^(.07t)`


`ln(2)=.07tlne`


`ln(2)/[.07lne]=t`


`9.90=t`


Final answer: 9.90 years

No comments:

Post a Comment