`cosh(x) + cosh(y) = 2cosh((x+y)/2)cosh((x-y)/2)`
proof:
Taking RHS , let us solve the proof
RHS=>`2cosh((x+y)/2)cosh((x-y)/2)`
=`2(((e^((x+y)/2)+e^(-(x+y)/2))/2)* ((e^((x-y)/2)+e^(-(x-y)/2))/2))`
its like 2((A+B)*(C+D))=2(AC+AD+BC+BD)
on multilication
=`2[[(e^((x+y)/2)*(e^((x-y)/2)]+[(e^((x+y)/2)*(e^(-(x-y)/2)]+[(e^(-(x+y)/2)*(e^((x-y)/2)]+[(e^(-(x+y)/2)*(e^(-(x-y)/2)]]/4`
`=[[(e^((x+y)/2)*(e^((x-y)/2)))]+[(e^((x+y)/2)*(e^(-(x-y)/2))]+[(e^(-(x+y)/2)*(e^((x-y)/2))]+[(e^(-(x+y)/2)*(e^(-(x-y)/2))]]/2`
`As (e^((x+y)/2)*(e^((x-y)/2))) = e^((2x+y-y)/2)=e^x`
similarly
`(e^((x+y)/2)*(e^(-(x-y)/2)))=e^y`
`(e^(-(x+y)/2)*(e^((x-y)/2)))=e^-y`
`(e^(-(x+y)/2)*(e^(-(x-y)/2)))=e^-x`
so,
`[[(e^((x+y)/2)*(e^((x-y)/2))]+[(e^((x+y)/2)*(e^(-(x-y)/2)]+[(e^(-(x+y)/2)*(e^((x-y)/2)]+[(e^(-(x+y)/2)*(e^(-(x-y)/2)]]/2`
=`(e^x+e^y+e^-y+e^-x)/2`
=`(e^x+e^(-x)+e^y+e^(-y))/2`
= `(e^x+e^(-x))/2 +(e^y+e^(-y))/2`
= `cosh(x) + cosh(y)`
And so , LHS=RHS
so ,
`cosh(x) + cosh(y) = 2cosh((x+y)/2)cosh((x-y)/2)`
No comments:
Post a Comment