We have to evaluate the integral:`` `\int \frac{2x-5}{x^2+2x+2}dx`
We can write the integral as:
`\int \frac{2x-5}{x^2+2x+2}dx=\int\frac{2x-5}{(x+1)^2+1}dx`
Let `x+1=t`
So, `dx=dt`
Now we can write the integral as:
`\int \frac{2x-5}{(x+1)^2+1}dx=\int \frac{2(t-1)-5}{t^2+1}dt`
`=\int \frac{2t-7}{t^2+1}dt`
`=\int \frac{2t}{t^2+1}dt-\int\frac{7}{t^2+1}dt` --------------->(1)
Now we will first evaluate the integral `\int \frac{2t}{t^2+1}dt`
Let `t^2+1=u`
So, `2tdt=du`
Hence we can write,
`\int \frac{2tdt}{t^2+1}=\int \frac{du}{u}`
`=ln(u)`
`=ln(t^2+1)`
Now we will evaluate the second integral : `\int \frac{7}{t^2+1}dt`
`\int \frac{7}{t^2+1}dt=7\int \frac{1}{t^2+1}dt`
`=7tan^{-1}(t)`
Substituting both these integral results in (1) we get,
`\int \frac{2x-5}{x^2+2x+2}dx=ln(t^2+1)-7tan^{-1}(t)+C` where C is a constant
`=ln((x+1)^2+1)-7tan^{-1}(x+1)+C`
`=ln(x^2+2x+2)-7tan^{-1}(x+1)+C`
No comments:
Post a Comment