Sunday, June 13, 2010

`y = x^(2/x)` Use logarithmic differentiation to find dy/dx

 For the given problem:` y = x^(2/x)` , we apply the natural logarithm on both sides:


`ln(y) =ln(x^(2/x))`


Apply the natural logarithm property: `ln(x^n) = n*ln(x)` .


`ln(y) = (2/x) *ln(x)`


Apply chain rule  on the left side since y is is function of x.


`d/dx(ln(y))= 1/y *y'`



Apply product rule:` d/(dx) (u*v) = u'*v + v' *u` on the right side:


Let `u=2/x` then `u' = -2/x^2`


    ` v =ln(x)` then` v' = 1/x`


`d/(dx) ((2/x) *ln(x)) =d/(dx) ((2/x)) *ln(x) +(2/x) *d/(dx) (ln(x))`


                                `= (-2/x^2)*ln(x) + (2/x)(1/x)`


                              ` =(-2)/(x^2ln(x))+ 2/x^2`


                          ` = (-2ln(x)+2)/x^2`



The derivative of `ln(y) = (2/x) *ln(x) ` becomes :


`1/y*y'=(-2ln(x)+2)/x^2`


 Isolate y' by multiplying both sides by (y):


`y* (1/y*y')= ((-2ln(x)+2)/x^2)*y`


`y' =((-2ln(x)+2)*y)/x^2`


Plug-in `y = x^(2/x) `  on the right side:


`y' =((-2ln(x)+2)*x^(2/x))/x^2`



Or `y' =((-2ln(x)+2)*x^(2/x))*x^(-2)`


   `y' =(-2ln(x)+2)*x^(2/x-2)`


   `y' =(-2ln(x)+2)*x^((2-2x)/x)`


   ` y' =-2x^((2-2x)/x)ln(x)+2x^((2-2x)/x)`


`    y = -2x^((2-2x)/x) (lnx-1)

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...