Arc length (L) of the function x=h(y) on the interval [c,d] is given by the formula,
`L=int_c^dsqrt(1+(dx/dy)^2)dy` , if x=h(y) and c `<=` y `<=` d,
`x=1/3(y^2+2)^(3/2)`
`dx/dy=1/3(3/2)(y^2+2)^(3/2-1)(2y)`
`dx/dy=y(y^2+2)^(1/2)`
Plug in the above derivative in the arc length formula,
`L=int_0^4sqrt(1+(y(y^2+2)^(1/2))^2)dy`
`L=int_0^4sqrt(1+y^2(y^2+2))dy`
`L=int_0^4sqrt(1+y^4+2y^2)dy`
`L=int_0^4sqrt((y^2+1)^2)dy`
`L=int_0^4(y^2+1)dy`
`L=[y^3/3+y]_0^4`
`L=[4^3/3+4]-[0^3/3+0]`
`L=[64/3+4]`
`L=[(64+12)/3]`
`L=76/3`
Arc length of the function over the given interval is `76/3`
No comments:
Post a Comment