`y=3ln(6t+1)`
To take the derivative of this, refer to formula:
`d/(dx) (ln u) = 1/u * (du)/dx `
Applying that, the derivative of the function will be:
`d/(dt)(y) = d/(dt)[3ln(6t+1)]`
`(dy)/(dt)=3d/(dt)[ln(6t+1)]`
`(dy)/(dt)=3*1/(6t+1) * d/(dt)(6t+1)`
`(dy)/(dt)=3*1/(6t+1) * 6`
`(dy)/(dt)=18/(6t+1)`
Therefore, `(dy)/(dt) = 18/(6t+1)` .
No comments:
Post a Comment