We have to evaluate the integral: `\int_{\pi/2}^{\pi}\frac{sinx}{1+cos^2x}dx`
Let `cosx=u`
So, `-sinx dx=du`
When `x=\pi/2, u=0`
`x=\pi, u=-1`
So we have,
`\int_{\pi/2}^{\pi}\frac{sinx}{1+cos^2x}dx=\int_{0}^{-1}\frac{-du}{u^2+1}`
`=\int_{-1}^{0}\frac{du}{u^2+1}`
=arctan(0)-arctan(-1)
=-arctan(-1)
=arctan(1)
=`pi/4`
No comments:
Post a Comment