Friday, February 24, 2012

`int (x^2+3)/(xsqrt(x^2-4)) dx` Find the indefinite integral

Recall indefinite integral follows `int f(x) dx = F(x)+C`


 where:


`f(x)` as the integrand


`F(x)` as the antiderivative of `f(x)`


`C` as the constant of integration.



 The given problem: `int (x^2+3)/(xsqrt(x^2-4)) dx` has an integrand of `f(x)=(x^2+3)/(xsqrt(x^2-4))` .


Apply u-substitution on `f(x) dx` by letting `u =x^2` then `du = 2x dx` or `dx= (du)/(2x)` :


`int (x^2+3)/(xsqrt(x^2-4))dx =int (u+3)/(xsqrt(u-4))*(du)/(2x)`


                        `=int ((u+3)du)/(2x^2sqrt(u-4))`


                         `=int ((u+3)du)/(2usqrt(u-4))`


Apply the basic integration property:` int c*f(x) dx = c int f(x) dx` :


`int ((u+3)du)/(2usqrt(u-4))=(1/2)int ((u+3)du)/(usqrt(u-4))`


Apply the basic integration property for sum:


`int (u+v) dx = int (u) dx+int (v) dx.`


`(1/2)int ((u+3)du)/(usqrt(u-4))=(1/2) [int (udu)/(usqrt(u-4))+int (3du)/(usqrt(u-4))]`


For the integration of the`int (udu)/(usqrt(u-4))` , we can cancel out the u:


`int (udu)/(usqrt(u-4))=int (du)/sqrt(u-4)`


Let ` v= u-4` then `dv =du` .


Apply the Law of exponents: `sqrt(x)= x^1/2` and `1/x^n= x^-n` ,  we get:


`int (du)/sqrt(u-4)=int (dv)/sqrt(v)`




Apply the Power Rule for integration: `int x^n dx= x^(n+1)/(n+1)+C`


`int v^(-1/2)dv=v^((-1)/2+1)/((-1)/2+1) +C`


                  ` = v^(1/2)/(1/2)`


                 ` =v^(1/2)*(2/1)`


                 ` = 2v^(1/2)`  or   `2sqrt(v)`


With `v= u-4`  then `2sqrt(v) = 2sqrt(u-4)` .


The integral becomes:


`int (du)/sqrt(u-4)=2sqrt(u-4).`



For the integration of `int (3du)/(usqrt(u-4))` , we basic integration property: `int c*f(x) dx = c int f(x)`


`int (3du)/(usqrt(u-4))=3int (du)/(usqrt(u-4))`


Let: `v= sqrt(u-4)`


Then square both sides to get `v^2=u-4` then `v^2+4 =u`


Applying implicit differentiation on `v^2=u-4` , we get: `2vdv = du` .


Plug-in `du =2v dv` , ` u=v^2+4` and `v=sqrt(u-4)` , we get:


`3 int (du)/(usqrt(u-4))=3int (2vdv)/((v^2+4)*v)`


                   ` =3int (2dv)/((v^2+4))`


                   ` =3*2int (dv)/(v^2+4)`


                   ` =6int (dv)/(v^2+4)`


The integral part resembles the basic integration for inverse tangent function:


`int (dx)/(x^2+a^2) = (1/a)arctan(u/a)+C`


Then,


`6int (dv)/(v^2+4) =6*(1/2)arctan(v/2)+C`


                 `=3arctan(v/2)+C`


Plug-in `v =sqrt(u-4)` , we get:


`int (3du)/(usqrt(u-4)) =3arctan(sqrt(u-4)/2)+C`



Combining the results, we get:


`(1/2) [int (udu)/(usqrt(u-4))+int (3du)/(usqrt(u-4))] = (1/2)*[2sqrt(u-4)+3arctan(sqrt(u-4)/2)]+C`


` =sqrt(u-4)+3/2arctan(sqrt(u-4)/2)+C`


Plug-in `u = x^2` to get the final answer:


`int (x^2+3)/(xsqrt(x^2-4)) dx= sqrt(x^2-4)+3/2arctan(sqrt(x^2-4)/2)+C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...