Monday, February 11, 2013

`y = x(6^(-2x))` Find the derivative of the function

Recall that the derivative of a function f at a point x is denoted as `y' = f'(x)` .


There basic properties and formula we can apply to simplify a function.


 For the problem `y = x(6^(-2x)),` we  may apply the Product Rule for derivative:


 Product Rule provides the formula:


`y = h(x)g(x)` then the derivative: `y'= h'(x)*g(x) + h(x)*g'(x)` .


In the problem, `y = x(6^(-2x))` , we let:


`h(x)=x` and` g(x) = 6^(-2x)` .


Derivative of each function:


`h'(x)= 1`


 For the other function `g(x)=6^(-2x)` , we apply derivative of exponential function that follows: `d/(du)(a^u) =a^u* ln(a)*du`  where `a!=1`


Then,


`g'(x)=6^(-2x)*ln(6) *(-2 )` .


We now have: 


`h(x) =x`


`h'(x) = 1 `


`g(x)= 6^(-2x)`


`g'(x)=6^(-2x)*ln(6) *(-2) or(-2)(6^(-2x)) ln(6)`


Then applying the Product Rule: `y' =h'(x) g(x)+ h(x)* g'(x)` , we get:


`y'=1*6^(-2x)+(-2)(6^(-2x)) ln(6) *x`


`y' = 6^(-2x) -(2)(6^(-2x)) xln(6)`


 It can be express in another form.


We can let:


`6^(-2x) = (6^2)^(-x) = 36^(-x)`


`6^(-2x) (2)= (3*2)^(-2x)(2)`


               ` = 3^(-2x)*2^(-2x)*2`


               `= (3^2)^(-x) *2^(-2x+1)`


               ` = 9^(-x)*2^(-2x+1)`


`y' = 6^(-2x) -2(6^(-2x)) xln(6) ` becomes:



`y' = 36^(-x) - 9^(-x)*2^(-2x+1)xln(6) `

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...