`intdx/sqrt(x^2+16)`
Let `x=4tantheta` for `-pi/2<theta<pi/2` .
`dx/[d(theta)]=4sec^2theta`
` ` `dx=4sec^2thetad(theta)`
`sqrt(x^2+16)=`
`sqrt((4tantheta)^2+16)=`
`sqrt(16tan^2theta+16)=`
`sqrt[16(tan^2theta+1)]=`
`sqrt(16sec^2theta)=`
`4|sec(theta)|`
`intdx/[4sec(theta)]=`
`int(4sec^2(theta)d(theta))/(4sec(theta))=`
` ` `intsec(theta)d(theta)=`
`ln|sec(theta)+tan(theta)|+C_1=`
`ln|sqrt(x^2+16)/4+x/4|+C_1=`
`ln|(sqrt(x^2+16)+x)/4|+C_1=`
`ln|(sqrt(x^2+16)+x)|-ln4+C_1=`
`ln|sqrt(x^2+16)+x|+C`
where `C` is the constant `C_1-ln4` .
The final answer is
`ln|(sqrt(x^2+16)+x)+C`
where `C` is the constant `C_1-ln4`.
No comments:
Post a Comment