Given` dy/dx+2y/x=3x-5`
`y'+2y/x=3x-5`
when the first order linear ordinary Differentian equation has the form of
`y'+p(x)y=q(x)`
then the general solution is ,
`y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx) `
so,
`y'+2y/x=3x-5--------(1)`
`y'+p(x)y=q(x)---------(2)`
on comparing both we get,
`p(x) = 2/x and q(x)=3x-5`
so on solving with the above general solution we get:
y(x)=`((int e^(int p(x) dx) *q(x)) dx +c)/e^(int p(x) dx) `
=`((int e^(int 2/x dx) *(3x-5)) dx +c)/e^(int 2/x dx)`
first we shall solve
`e^(int 2/x dx)=e^(2ln(x)) =x^2`
so
proceeding further, we get
y(x) =`((int e^(int 2/x dx) *(3x-5)) dx +c)/e^(int 2/x dx)`
=`((int x^2 *(3x-5)) dx +c)/x^2`
=`((int (3x^3 -5x^2) ) dx +c)/x^2`
= `(3x^4 /4 -5x^3/3+c)/x^2 `
so `y(x)=(3x^4 /4 -5x^3/3+c)/(x^2 )`
No comments:
Post a Comment