Wednesday, April 29, 2015

`int_(sqrt(2)/3)^(2/3) (dx)/(x^5 sqrt(9x^2 - 1))` Evaluate the integral

`int_(sqrt(2)/3)^(2/3)1/(x^5sqrt(9x^2-1))dx`


Let's first evaluate the indefinite integral by integral substitution,


Let `x=1/3sec(u)`


`=>dx=1/3sec(u)tan(u)du`


`int1/(x^5sqrt(9x^2-1))dx=int(1/((1/3sec(u))^5sqrt(9(1/3sec(u))^2-1)))1/3sec(u)tan(u)du`


`=int(1/(1/243sec^5(u)sqrt(sec^2(u)-1)))1/3sec(u)tan(u)du`


Now use the identity:`sec^2(theta)=1+tan^2(theta)`


`=int(243/(3sec^5(u)sqrt(1+tan^2(u)-1)))sec(u)tan(u)du`


`=int(81sec(u)tan(u))/(sec^5(u)sqrt(tan^2(u)))du`


`=81int1/(sec^4(u))du`


`=81intcos^4(u)du`


Now let's use the identity:`cos^2(theta)=(1+cos(2theta))/2`


`=81int((1+cos(2u))/2)^2du`


`=81int(1+cos^2(2u)+2cos(2u))/4du`


`=81int(1/4+(cos^2(2u))/4+1/2cos(2u))du`


`=81(int1/4du+int(cos^2(2u))/4du+int(cos(2u))/2du)`


`=81(u/4+1/4int(1+cos(4u))/2du+1/2intcos(2u)du)`


`=81(u/4+1/4int(1/2+cos(4u)/2)du+1/2(sin(2u))/2)`


`=81(u/4+1/4(int1/2du+intcos(4u)/2du)+1/4sin(2u))`


`=81(u/4+1/4(u/2+1/2sin(4u)/4)+1/4sin(2u))`  `=81(u/4+u/8+sin(4u)/32+sin(2u)/4)`


`=81((3u)/8+sin(4u)/32+sin(2u)/4)` 


Now recall that we have used `x=1/3sec(u)`


`=>sec(u)=3x`


`=>cos(u)=1/(3x)`


`=>u=arccos(1/(3x))`


Substitute back u and add a constant C to the solution,


`=81(3/8arccos(1/(3x))+1/32sin(4arccos(1/(3x)))+1/4sin(2arccos(1/(3x))))+C`


Now let's evaluate the definite integral,


`int_(sqrt(2)/3)^(2/3)dx/(x^5sqrt(9x^2-1))=81[3/8arccos(1/(3x))+1/32sin(4arccos(1/(3x)))+1/4sin(2arccos(1/(3x)))]_(sqrt(2)/3)^(2/3)`


`=81[3/8arccos(1/2)+1/32sin(4arccos(1/2))+1/4sin(2arccos(1/2))]-81[3/8arccos(1/sqrt(2))+1/32sin(4arccos(1/sqrt(2)))+1/4sin(2arccos(1/sqrt(2)))]`


`=81[3/8*pi/3+1/32sin(4*pi/3)+1/4sin(2*pi/3)]-81[3/8*pi/4+1/32sin(4*pi/4)+1/4sin(2*pi/4)]`


`=81[pi/8+1/32sin((4pi)/3)+1/4sin((2pi)/3)]-81[(3pi)/32+1/32sin(pi)+1/4sin(pi/2)]`


`=81[pi/8+1/32(-sqrt(3)/2)+1/4(sqrt(3)/2)]-81[(3pi)/32+1/32(0)+1/4(1)]`


`=81[pi/8+sqrt(3)/2(-1/32+1/4)-(3pi)/32-1/4]`


`=81[pi/8-(3pi)/32+sqrt(3)/2(7/32)-1/4]`


`=81[pi/32+(7sqrt(3))/64-1/4]`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...