We have to evaluate the integral:`\int \frac{x-2}{(x+1)^2+4}dx`
Let `x+1=u`
So, `dx=du`
Hence we have,
`\int \frac{x-2}{(x+1)^2+4}dx=\int \frac{u-3}{u^2+4}du`
`=\int \frac{u}{u^2+2^2}du-\int\frac{3}{u^2+2^2}du`
First we will evaluate `\int \frac{u}{u^2+4}du`
Let `u^2+4=t`
So, `2udu=dt`
Therefore we can write,
`\int \frac{u}{u^2+4}du=\int \frac{dt}{2t}`
`=\frac{1}{2}ln(t)`
`=\frac{1}{2}ln(u^2+4)`
Now we will evaluate, `\int \frac{3}{u^2+4}du`
`\int \frac{3}{u^2+2^2}du=\frac{3}{2}tan^{-1}(\frac{u}{2})`
Therefore we have,
`\int \frac{x-2}{(x+1)^2+4}dx=\frac{1}{2}ln(u^2+4)-\frac{3}{2}tan^{-1}(\frac{u}{2})+C`
`=\frac{1}{2}ln((x+1)^2+4)-\frac{3}{2}tan^{-1}(\frac{x+1}{2})+C`
`=\frac{1}{2}ln(x^2+2x+5)-\frac{3}{2}tan^{-1}(\frac{x+1}{2})+C`
No comments:
Post a Comment