Monday, May 9, 2016

`int_2^3 (2x-3)/sqrt(4x-x^2) dx` Find or evaluate the integral by completing the square

Recall  that `int_a^b f(x) dx = F(x)|_a^b` :


`f(x)` as the integrand function


`F(x) ` as the antiderivative of `f(x)`


"a" as the lower boundary value of x


"b" as the upper boundary value of x


To evaluate the given problem: `int_2^3 (2x-3)/sqrt(4x-x^2)dx` , we need to determine the


 indefinite integral F(x)  of the integrand: `f(x)=(2x-3)/sqrt(4x-x^2)` .


We apply completing the square on `4x-x^2` .


Factor out `(-1)`  from `4x-x^2` to get `(-1)(x^2-4x)`


The `x^2-4x` or `x^2-4x+0` resembles `ax^2+bx+c` where:


`a= 1` and `b =-4` that we can plug-into `(-b/(2a))^2` .


`(-b/(2a))^2= (-(-4)/(2*1))^2`


              `= (4/2)^2`


              ` = 2^2`


              ` =4`


To complete the square, we add and subtract 4 inside the ():


`(-1)(x^2-4x) =(-1)(x^2-4x+4 -4)`


Distribute (-1) in "-4" to move it outside the ().


`(-1)(x^2-4x+4 -4) =(-1)(x^2-4x+4) + (-1)(-4)`


                          `=(-1)(x^2-4x+4) + 4`


Apply factoring for the perfect square trinomial: `x^2-4x+4 = (x-2)^2`


`(-1)(x^2-4x+4) + 4 =-(x-2)^2 + 4`


                                     ` = 4-(x-2)^2`



which means `4x-x^2=4-(x-2)^2`


Applying it to the integral:


`int_2^3 (2x-3)/sqrt(4x-x^2)dx =int_2^3 (2x-3)/sqrt(4-(x-2)^2)dx`


To solve for the indefinite integral of `int (2x-3)/sqrt(4-(x-2)^2)du` ,


let `u =x-2` then `x = u+2` and `du= dx` .


Apply u-substitution , we get:


`int (2x-3)/sqrt(4-(x-2)^2)dx= int (2(u+2)-3)/sqrt(4-u^2)du`


                             `=int (2u+4-3)/sqrt(4-u^2)du`


                             `=int (2u+1)/sqrt(4-u^2)du`


 Apply the basic integration property: `int (u+v) dx = int (u) dx + int (v) dx` .  


  `int (2u+1)/sqrt(4-u^2)du =int (2u)/sqrt(4-u^2)du +int1/sqrt(4-u^2)du`


For the integration of the first term: `int (2u)/sqrt(4-u^2)du` ,


let `v = 4-u^2` then `dv = -2u du` or `-dv = 2u du` then it becomes:


`int (2u)/sqrt(4-u^2)du =int (-1)/sqrt(v)dv`


Applying radical property: `sqrt(x) = x^(1/2)` and  Law of exponent: `1/x^n = x^-n` , we get:


`(-1)/sqrt(v) =(-1)/v^(1/2)`



Then,


`int (-1)/sqrt(v)dv =int(-1)v^(-1/2) dv`


Applying Power Rule of integration: `int x^n dx = x^(n+1)/(n+1)`


`int (-1)v^(-1/2) dv = (-1)v^(-1/2+1)/(-1/2+1)`


                         `=(-1)v^(1/2)/(1/2)`


                        `=(-1)v^(1/2)*(2/1)`


                         `=-2v^(1/2)`


                         `= -2sqrt(v)`


Recall `v =4-u^2 then-2sqrt(v)=-2sqrt(4-u^2)` .


Then,


`int (2u)/sqrt(4-u^2)du =-2sqrt(4-u^2)`



For the integration of the second term:  `int1/sqrt(4-u^2)du` ,


 we apply the basic integration formula for inverse sine function:


`int 1/sqrt(a^2-u^2) du = arcsin(u/a)`


Then,


`int1/sqrt(4-u^2)du=int1/sqrt(2^2-u^2)du`


                    `= arcsin(u/2)`


 For the complete indefinite integral, we combine the results as:


`int (2u+1)/sqrt(4-u^2)du =-2sqrt(4-u^2) +arcsin(u/2)`


 Then plug-in `u=x-2` to express it terms of x, to solve for `F(x)` .


`F(x) =-2sqrt(4-(x-2)^2) +arcsin((x-2)/2)`


For the definite integral, we applying the boundary values: `a=2` and `b=3` in `F(x)|_a^b= F(b) - F(a)` .


`F(3) -F(2) = [-2sqrt(4-(3-2)^2) +arcsin((3-2)/2)] -[-2sqrt(4-(2-2)^2) +arcsin((2-2)/2)]`


       `=[-2sqrt(4-(1)^2) +arcsin(1/2)] -[-2sqrt(4-(0)^2) +arcsin(0/2)]`


        `=[-2sqrt(3) +arcsin(1/2)] -[-2sqrt(4) +arcsin(0)]`


         ` =[-2sqrt(3) +pi/6] -[-2*(2)+0]`


        `=[-2sqrt(3) +pi/6] -[-4]`


         `=-2sqrt(3) +pi/6 + 4`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...