Given,
`f(x,y) = x^3 -4xy^2 + y^3`
to check whether it is homogenous or not
`f(tx,ty)=(tx)^3 -4tx (ty)^2 + (ty)^3 = (t^3)(x^3 -4xy^2 + y^3)`
so this is of the form
`f(tx,ty)=t^n f(x,y)`
and so the function f(x,y) is homogenous,
`f(tx,ty)= (t^3)(x^3 -4xy^2 + y^3)`
and the Degree `n =3`
No comments:
Post a Comment