Problem:`3(5^(x-1))=86`
` `
To simplify, we divide both sides by 3:
`(3(5^(x-1)))/3=(86)/3`
`5^(x-1)=(86)/3`
` `
` `
Take the "log" on both sides to apply the logarithm property: `log(x^y)=y*log(x)` .
Applying on the given problem:
`log(5^(x-1))=log((86)/3)` ` `
` `
`(x-1)log(5)=log((86)/3)`
Divide both sides by` log(5)` ` ` to isolate`(x-1)` :
` `
` `
Add 1 on both sides to solve x:
`x-1=(log((86)/3))/(log(5))`
` `
+1 +1
------------------------------------------
`x=(log((86)/3))/(log(5))+1`
` `
`x~~3.085`
To check, plug-in`x=3.085` in ` ` :
`3(5^(3.085-1))=?86`
`3*5^2.085=?86`
`3*28.66503386=?86`
`85.99510157~~86` TRUE.
Conclusion: x= 3.085 as the real solution
No comments:
Post a Comment