Sunday, December 27, 2009

`yy' - 2e^x = 0 , y(0) = 3` Find the particular solution that satisfies the initial condition

For the given problem:` yy'-2e^x=0` , we can evaluate this by applying variable separable differential equation in which we express it in a form of `f(y) dy = f(x)dx` .


 Then, `yy'-2e^x=0` can be rearrange into `yy'= 2e^x`


Express y'  as (dy)/(dx):


 `y(dy)/(dx)= 2e^x`


Apply direct integration in the form of  `int f(y) dy = int f(x)dx` :


`y(dy)/(dx)=2e^x`


`ydy= 2e^xdx`


`int ydy= int 2e^x dx`


For the left side, we apply Power Rule integration: `int u^n du= u^(n+1)/(n+1)` .


`int y dy= y^(1+1)/(1+1)`


             ` = y^2/2`


 For the right side, we apply basic integration property: `int c*f(x)dx= c int f(x) dx` and basic integration formula for exponential function: `int e^u du = e^u+C ` on the right side.


`int 2e^x dx= 2int e^x dx`


                  `= 2e^x+C`


Combining the results for the general solution of differential equation:


`y^2/2=2e^x+C`


`2* [y^2/2] = 2*[2e^x]+2*C `     


Let `2*C= C` . Just a constant.


`y^2= 4e^x+C`



 To find the particular solution we consider the initial condition `y(0)=3` which implies `x=0` and `y =3` .


Plug them in to  `y^2= 4e^x+C` , we get:


`3^2= 4e^0+C`


`9= 4*1+C`


`9=4+C`


Then `C=9-4=5` .


Plug-in `C=5` in`y^2= 4e^x+C` , we get the particular solution:


`y^2= 4e^x+5`


 `y = +-sqrt(4e^x+5).`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...