`intsqrt(x^2-9)/x^3dx`
Let's evaluate the integral: Apply integration by parts,
`intuv'=uv-intu'v`
Let `u=sqrt(x^2-9)`
`v'=1/x^3`
`u'=d/dx(sqrt(x^2-9))`
`u'=1/2(x^2-9)^(1/2-1)(2x)`
`u'=x/sqrt(x^2-9)`
`v=int1/x^3dx`
`v=x^(-3+1)/(-3+1)`
`v=-1/(2x^2)`
`intsqrt(x^2-9)/x^3dx=sqrt(x^2-9)(-1/(2x^2))-intx/sqrt(x^2-9)(-1/(2x^2))dx`
`=-sqrt(x^2-9)/(2x^2)+1/2int1/(xsqrt(x^2-9))dx`
Apply the integral substitution `y=sqrt(x^2-9)`
`dy=1/2(x^2-9)^(1/2-1)(2x)dx`
`dy=x/sqrt(x^2-9)dx`
`dy=(xdx)/y`
`=-sqrt(x^2-9)/(2x^2)+1/2int(ydy)/x(1/(xy))`
`=-sqrt(x^2-9)/(2x^2)+1/2intdy/x^2`
`=-sqrt(x^2-9)/(2x^2)+1/2intdy/(y^2+9)`
Now use the standard integral:`int1/(x^2+a^2)dx=1/aarctan(x/a)+C`
`=-sqrt(x^2-9)/(2x^2)+1/2(1/3arctan(y/3))`
Substitute back `y=sqrt(x^2-9)` and add a constant C to the solution,
`=-sqrt(x^2-9)/(2x^2)+1/6arctan(sqrt(x^2-9)/3)+C`
No comments:
Post a Comment