Thursday, March 25, 2010

`int sqrt(x^2 - 9)/x^3 dx` Evaluate the integral

`intsqrt(x^2-9)/x^3dx`


Let's evaluate the integral: Apply integration by parts,


`intuv'=uv-intu'v`


Let `u=sqrt(x^2-9)`


`v'=1/x^3`


`u'=d/dx(sqrt(x^2-9))`


`u'=1/2(x^2-9)^(1/2-1)(2x)`


`u'=x/sqrt(x^2-9)`


`v=int1/x^3dx`


`v=x^(-3+1)/(-3+1)`


`v=-1/(2x^2)`


`intsqrt(x^2-9)/x^3dx=sqrt(x^2-9)(-1/(2x^2))-intx/sqrt(x^2-9)(-1/(2x^2))dx`


`=-sqrt(x^2-9)/(2x^2)+1/2int1/(xsqrt(x^2-9))dx`


Apply the integral substitution `y=sqrt(x^2-9)`


`dy=1/2(x^2-9)^(1/2-1)(2x)dx`


`dy=x/sqrt(x^2-9)dx`


`dy=(xdx)/y`


`=-sqrt(x^2-9)/(2x^2)+1/2int(ydy)/x(1/(xy))`


`=-sqrt(x^2-9)/(2x^2)+1/2intdy/x^2`


`=-sqrt(x^2-9)/(2x^2)+1/2intdy/(y^2+9)`


Now use the standard integral:`int1/(x^2+a^2)dx=1/aarctan(x/a)+C`


`=-sqrt(x^2-9)/(2x^2)+1/2(1/3arctan(y/3))`


Substitute back `y=sqrt(x^2-9)` and add a constant C to the solution,


`=-sqrt(x^2-9)/(2x^2)+1/6arctan(sqrt(x^2-9)/3)+C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...