Saturday, April 24, 2010

`int x/sqrt(x^2 + x + 1) dx` Evaluate the integral

`intx/sqrt(x^2+x+1)dx`


Let's rewrite the integrand by completing the square of the denominator,


`=intx/sqrt((x+1/2)^2+3/4)dx`


Now let's apply the integral substitution,


Let `u=x+1/2`


`x=u-1/2`


du=1dx


`=int(u-1/2)/sqrt(u^2+3/4)du`


`=int(2u-1)/sqrt(4u^2+3)du`


Now apply the sum rule,


`=int(2u)/sqrt(4u^2+3)du-int1/sqrt(4u^2+3)du`


`=2intu/sqrt(4u^2+3)du-int1/sqrt(4u^2+3)du`


Now let's evaluate the first integral by applying the integral substitution,


Let `v=4u^2+3`


`dv=8udu`


`intu/sqrt(4u^2+3)du=int1/(8sqrt(v))dv`


`=1/8intv^(-1/2)dv`


`=1/8(v^(-1/2+1))/(-1/2+1)`


`=1/8v^(1/2)/(1/2)`


`=2/8v^(1/2)`


`=1/4sqrt(v)`


substitute back `v=4u^2+3`


`=1/4sqrt(4u^2+3)`


Now let's evaluate the second integral `int1/sqrt(4u^2+3)du` using integral substitution,


For `sqrt(bx^2+a)` substitute `x=sqrt(a)/sqrt(b)tan(v)` ,


Let `u=sqrt(3)/2tan(v)`


`du=sqrt(3)/2sec^2(v)dv`


`int1/sqrt(4v^2+3)du=int(sqrt(3)/2sec^2(v))/sqrt(4(sqrt(3)/2tan(v))^2+3)dv`


`=int(sqrt(3)sec^2(v))/(2sqrt(3tan^2(v)+3))dv`


`=sqrt(3)/2int(sec^2(v))/sqrt(3tan^2(v)+3)dv`


`=sqrt(3)/2int(sec^2(v))/(sqrt(3)sqrt(tan^2+1))dv`


`=1/2int(sec^2(v))/sqrt(tan^2(v)+1)dv`


Now use the identity:`1+tan^2(x)=sec^2(x)`


`=1/2int(sec^2(v))/sqrt(sec^2(v))dv`


assuming sec(v)`>=0`


`=1/2intsec(v)dv`


Now using the common integral,


`intsec(v)dx=ln((sec(v)+tan(v))`


`=1/2(ln(sec(v)+tan(v))`


Substitute back `v=arctan((2u)/sqrt(3))`


`=1/2[ln{sec(arctan((2u)/sqrt(3)))+tan(arctan((2u)/sqrt(3))}]`


`=1/2[ln{sqrt(1+(4u^2)/3)+(2u)/sqrt(3)}]`


`int(2u-1)/sqrt(4u^2+3)du=2(1/4sqrt(4u^2+3))-1/2ln(sqrt(1+4u^2/3)+(2u)/sqrt(3))`


`=1/2sqrt(4u^2+3)-1/2ln(sqrt(1+(4u^2)/3)+(2u)/sqrt(3))`


Substitute back `u=x+1/2`


`=1/2sqrt(4(x+1/2)^2+3)-1/2ln(sqrt(1+(4(x+1/2)^2)/3)+(2(x+1/2))/sqrt(3))`


`=1/2sqrt(4(x^2+1/4+x)+3)-1/2ln(sqrt(1+4/3(x^2+1/4+x))+(2/sqrt(3))(2x+1)/2)`


`=1/2sqrt(4x^2+1+4x+3)-1/2ln(sqrt((3+4x^2+1+4x)/3)+(2x+1)/sqrt(3))`


`=1/2sqrt(4x^2+4x+4)-1/2ln(sqrt((4x^2+4x+4)/3)+(2x+1)/sqrt(3))`


`=1/2sqrt(4(x^2+x+1))-1/2ln((2/sqrt(3))sqrt(x^2+x+1)+(2x+1)/sqrt(3))`


`=sqrt(x^2+x+1)-1/2ln((2sqrt(x^2+x+1)+2x+1)/sqrt(3))`


add a constant C to the solution,


`=sqrt(x^2+x+1)-1/2ln((2sqrt(x^2+x+1)+2x+1)/sqrt(3))+C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...