`y=log_5 sqrt(x^2-1)`
Before taking the derivative of the function, express the radical in exponent form.
`y = log_5 (x^2-1)^(1/2)`
Then, apply the logarithm rule ` log_b (a^m) = m* log_b(a)` .
`y = 1/2log_5 (x^2-1)`
From here, proceed to take the derivative of the function. Take note that the derivative formula of logarithm is `d/dx [log_b (u)] = 1/(ln(b) * u) * (du)/dx` .
Applying this formula, the derivative of the function will be:
`(dy)/dx = d/dx[1/2log_5 (x^2-1)]`
`(dy)/dx = 1/2 d/dx[log_5 (x^2-1)]`
`(dy)/dx = 1/2 *1/(ln(5)*(x^2-1)) * d/dx(x^2-1)`
`(dy)/dx = 1/2 *1/(ln(5)*(x^2-1)) *2x`
`(dy)/dx = (2x)/(2(x^2-1)ln(5))`
`(dy)/dx = x/((x^2-1)ln(5))`
Therefore, the derivative of the function is `(dy)/dx = x/((x^2-1)ln(5))` .
No comments:
Post a Comment