Monday, September 27, 2010

`int 2 / sqrt(-x^2+4x) dx` Find or evaluate the integral by completing the square

To evaluate the given integral:` int 2/sqrt(-x^2+4x)dx` , we  may apply the basic integration property: `int c*f(x)dx= c int f(x)dx` .


The integral becomes:


`2 int dx/sqrt(-x^2+4x)`


We complete the square for the expression `(-x^2+4x)` .


Completing the square:


For the first step, factor out (-1): `(-x^2+4x) = (-1)(x^2-4x) or -(x^2-4x)`


The `x^2 -4x ` or `x^-4x+0` resembles the `ax^2+bx+c ` where:


`a=1` , `b =-4` and `c=0` .


To complete the square, we add and subtract `(-b/(2a))^2` .


Using `a=1` and `b=-4` , we get:


`(-b/(2a))^2 =(-(-4)/(2(1)))^2`


              `=(4/2)^2`


              ` = 2^2`


              `=4`


Add and subtract 4 inside the` (x^2-4x)` :


`-(x^2-4x+4 -4)`


Distribute the negative sign on -4 to rewrite it as:


`-(x^2-4x+4) +4`


Factor the perfect square trinomial: `x^2-4x+4 = (x-2)^2` .


`-(x-2)^2 +4`



For the original problem, we let: `-x^2+4x=-(x-2)^2 +4` :


`2 int dx/sqrt(-x^2+4x)=2 int dx/sqrt(-(x-2)^2+4)`


It can also be rewritten as:


`2 int dx/sqrt(-(x-2)^2 +2^2) =2 int dx/sqrt(2^2 -(x-2)^2)`


The integral part resembles the integral formula:


`int (du)/sqrt(a^2-u^2) = arcsin(u/a)+C` .


Applying the formula, we get:


`2 int dx/sqrt(2^2 -(x-2)^2) =2 *(arcsin (x-2)/2) +C`


 Then the indefinite integral :


`int 2/sqrt(-x^2+4x)dx = 2arcsin((x-2)/2)+C`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...