Formula for compounding n times per year: `A=P(1+r/n)^(nt)`
Formula for compounding continuously: `A=Pe^(rt)`
A=Final Amount
P=Initial Amount
r=rate of investment expressed as a percent
n=number of compoundings per year
t=time in years
a) r=5% n=1 (annually)
`A=P(1+r/n)^(nt)`
`2000=1000(1+.05/1)^(1*t)`
`2=1.05^t`
`ln(2)=tln(1.05)`
`ln(2)/ln(1.05)=t`
`14.21=t`
Final Answer: 14.21 years
b) r=5% n=12 (monthly)
`A=P(1+r/n)^(nt)`
`2000=1000(1+.05/12)^(12*t)`
`2=(1.00416)^(12t)`
`ln(2)=12tln(1.00416)`
`ln(2)/[12ln(1.00416)]=t`
`13.89=t`
Final Answer: 13.89 years
c) r=5% n=365 (daily)
`A=P(1+r/n)^(nt)`
`2000=1000(1+.05/365)^(365*t)`
`2=(1.000136)^(365t)`
`ln(2)=365tln(1.00136)`
`ln(2)/[365ln(1.00136)]=t`
`13.86=t`
Final Answer: 13.86 years
d)`A=Pe^(rt)`
`2000=1000e^(.05*t)`
`2=e^(.05t)`
`ln(2)=.05tlne`
`ln(2)/[.05lne]=t`
`13.86=t`
Final Answer: 13.86 years
No comments:
Post a Comment