Saturday, April 30, 2011

`y = 1/2 (1/2ln((x+1)/(x-1)) + arctanx)` Find the derivative of the function

The derivative of y in terms of x is denoted by  `(dy)/(dx)` or `y’` .


 For the given problem: `y = 1/2(1/2ln((x+1)/(x-1)) +arctan(x))` , we may apply the basic differentiation property: `d/(dx) c*f(x) = c d/(dx) f(x)` .


`d/(dx)y =d/(dx) 1/2[1/2ln((x+1)/(x-1)) +arctan(x)]`


`y'=1/2d/(dx) [1/2ln((x+1)/(x-1)) +arctan(x)]`


Apply the basic differentiation property: `d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)`


`y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]`


For the derivative of `d/(dx)(1/2ln((x+1)/(x-1)))` , we may apply again the basic derivative property:`d/(dx) c*f(x) = c d/(dx) f(x)` .


`d/(dx) (1/2ln((x+1)/(x-1)))=1/2d/(dx) (ln((x+1)/(x-1)))`


For the derivative part, follow the basic derivative formula for natural logarithm function: `d/(dx) ln(u)= (du)/u` .


 Let `u =(x+1)/(x-1)` then `du = -2/(x-1)^2` .


 Note For the derivative of `u=(x+1)/(x-1)` ,we apply the Quotient Rule: `d/(dx)(f/g) = (f'*g-f*g')/g^2` .


Let:


`f= (x+1)` then `f'=1`


`g=(x-1)` then `g'=1`


Then,


`d/(dx)((x+1)/(x-1))= (1*(x-1)-(x+1)*(1))/(x-1)^2`


                ` =((x-1)-(x+1))/(x-1)^2`


                 ` =(x-1-x-1)/(x-1)^2`


                ` =(-2)/(x-1)^2`


Applying: `d/(dx) ln(u)= (du)/u` on:


`1/2d/(dx)(ln((x+1)/(x-1)))= (1/2) *(((-2)/(x-1)^2))/(((x+1)/(x-1)))`


                                     `=(1/2) *((-2)/(x-1)^2)*(x-1)/(x+1)`


                                     `=(-2(x-1))/(2(x-1)^2(x+1))`


Cancel common factors 2 and `(x-1)` from top and bottom:


`(-2(x-1))/(2(x-1)^2(x+1)) =-1/((x-1)(x+1))`


Recall `(x-1)*(x+1) = x^2-x+x-1 = x^2-1` then the derivative becomes:


`1/2d/(dx)(ln((x+1)/(x-1)))=-1/(x^2-1)`



For the derivative of `d/(dx)(arctan(x))` , we apply basic derivative formula for inverse tangent:


`d/(dx)(arctan(x))=1/(x^2+1)`



Combining the results, we get:


`y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]`


`y'=(1/2) [-1/(x^2-1) +1/(x^2+1)]`


`y' =(1/2) [-1/(x^2-1) *(x^2+1)/(x^2+1) +1/(x^2+1)*(x^2-1)/(x^2-1)]`


`y' =(1/2) [(-(x^2+1) +(x^2-1))/((x^2-1) (x^2+1))]`


`y' =(1/2) [(-x^2-1+x^2-1)/((x^2-1) (x^2+1))]`


`y' =(1/2) [(-2)/((x^2-1) (x^2+1))]`


`y' =(-1)/((x^2-1) (x^2+1))`


or


`y'= (-1)/(x^4-1)`

No comments:

Post a Comment

Thomas Jefferson's election in 1800 is sometimes called the Revolution of 1800. Why could it be described in this way?

Thomas Jefferson’s election in 1800 can be called the “Revolution of 1800” because it was the first time in America’s short history that pow...